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Random population dispersal in a linear hostile environment

S. Harris*
Department of Mechanical Engineering, Columbia University, New York, New York 10027

~Received 22 March 2000!

We consider the Fisher equation and its generalization for an asocial population in a linear, hostile environ-
ment. The method of center manifold analysis is used to obtain the time-dependent solution of the former,
nonlinear equation. The correct critical habitat size is obtained; in addition, the result for the steady state
central density compares favorably with the exact result for relatively large population sizes~up to one half of
the carrying capacity!. For a model of asocial growth we obtain the expanded criteria for survival. This
includes the habitat size, the population size at which positive growth begins, and also the minimum initial
central density.

PACS number~s!: 87.23.Cc, 02.30.Jr
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I. INTRODUCTION

The Fisher equation@1# describing gene flow in a linea
population and generalizations of this equation by K
mogorovet al. @2# and others@3# have been extensively stud
ied and applied to a wide variety of problems in differe
areas@4#. A primary focus of that work has been on th
existence and stability of traveling wave solutions in an u
bounded, one-dimensional domain@1–4#. This equation and
some generalizations of it have been used to study pop
tion growth and dispersal, particularly to determine the mi
mum habitat size~critical size! required for survival when
the surroundings are hostile@5,6#. Only the steady state so
lutions are required to determine the critical size, and for
Fisher equation, an exact implicit solution in terms of ellip
integrals, invertible to give an explicit solution in terms of
Jacobian elliptic function, was found by Skellam@5#. The
description of the evolution to the steady state, and an e
mate of the time required for an initial population distrib
tion to reach this state, is a much more difficult problem. F
the Fisher equation, approximate solutions based onad hoc
methods were found by Barakat@7# and Landhal@8#.

The purpose of this paper is to present a system
method for solving the time-dependent Fisher equation
well as some of the generalizations of this equation of in
est. We consider the former equation as a benchmark
ample for the proposed method. This will serve the didac
function of providing a self-consistent theoretical framewo
that leads to a more rigorous and more generally applica
treatment than the previousad hocstudies@7,8#. More im-
portantly, the satisfactory results obtained in this context m
tivate application of the method to more complicated sit
tions of interest. As a specific example, we consider a mo
for the random dispersal of an asocial population@6#.

II. METHOD OF SOLUTION

The approach we will take is based on the center mani
theory @9,10# and the normal solution ansatz used to obt
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solutions to the nonlinear Boltzmann equation@11#. The
Fisher equation and its generalizations are specific exam
of the general, one-dimensional single species reaction
fusion equation

]u

]t
5

]

]x
D~u!

]u

]x
1F~u!. ~1!

Here u(x,t)5@n(x,t)/nc# is the ratio of species populatio
density to carrying capacity at pointx in 0<x<L at time t,
D(u) is the diffusion coefficient, and the nonlinear functio
F(u) describes the population growth kinetics. When t
surroundings are hostile, as considered here, the boun
conditions areu(0,t)5u(L,t)50. As we mentioned earlier
the primary focus of interest regarding Eq.~1! has been on
the existence and stability of traveling wave solutions in
unbounded domain@1–3#. We are unaware of any exact so
lutions for a bounded domain that describe the evolution ou
to a steady state.

For the Fisher equation@1# D(u)5D5const, F(u)
5au(12u), Skellam @5# has found the exact steady sta
solution and the critical habitat size, but the solution involv
elliptic integrals and is not particularly revealing. Approx
mate solutions have been determined for the time-depen
equation for the case where the initial value ofu is a pure
sine function@7,8#. These solutions are based on thead hoc
representation of the spatial dependence as a linear func
@7# or a pure sine function@8#. The method that we use wil
provide a framework for generalizing thesead hoc ap-
proaches and also for resolving the difficulty that occu
when they lead to solutions that exceed the carrying cap
ity. The price we pay for this is that our solutions are on
strictly useful whenu!1; however, we find that even whe
the central density at steady state is as large as one hal
carrying capacity, our result is within 1% of the exact res
@5#. Furthermore like thead hoc solutions, our solution is
expressed in terms of elementary functions, which permi
greater transparency relative to the dependence ofu on the
system parameters.

The normal solutions to the nonlinear Boltzmann equat
@11# follow from the assumption that the distribution fun
tion f (x,v,t) describing the density of atoms~or structureless
.
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molecules! at positionx with velocity v at timet depends on
the time only through the velocity momentsn(x,t), u(x,t),
Pi j (x,t); i.e.,

f ~x,v,t !→ f „x,v;n~x,t !,u~x,t !,Pi j ~x,t !… ~2!

wheren, u, Pi j are found by integratingf , f v, f vIvj , respec-
tively, over the full velocity space, e.g.,u5*dv f v. A
closely related contraction underlies the center manif
theory @9,10# and its application to the solution of nonline
equations such as Eq.~1!. Despite the fact that the principl
of superposition is not applicable to nonlinear equations
special kind of solution having this form is sought usi
spatial basis functions appropriate to the boundary co
tions. The special property of the solution that is assume
that the time dependence of all the coefficients beyond
first is through their functional dependence on the first co
ficient. In the present context, we look for a solution to E
~1! of the form

u5 (
n51

`

un~ t !sin~npx/L !, ~3!

whereun→un@u1(t)#, n.1, reminiscent of Eq.~2!. As is the
case with the solution to the Boltzmann equation, the ini
conditions may be such that for early times the solution
tained is not accurate~initial slip! @11#. The usefulness of this
method requires that limu1→0(un /u1)→0, a condition that
we will show is satisfied by the solutions of Eq.~1!. Since, as
noted above, we consider smallu, the solution will be well
approximated outside the initial time layer byu1 . In Sec. III,
we apply this method of solution to the Fisher equation a
give some quantitative results.

III. SOLUTION OF THE FISHER EQUATION

The un can be found by substituting Eq.~3! into Eq. ~1!
with D(u)5D, F(u)5au(12u), multiplying by
sin(npx/L), and integrating overx. For n.1 we make use of
the assumed dependence of theun on time throughu1 to
write

d

dt
un5

dun

du1

d

dt
u15~an12bnu11¯ !

d

dt
u1 , ~4!

where we have expandedun5anu11bnu1
21¯ . The equa-

tion for u1 is

d

dt
u15~a2Dp2/L2!u12~8a/3p!u1

2

1O~u1u2 ,u1u3 ,...,u2u3 ,...,u2
2,...!. ~5!

Denoting all the terms above not explicitly containing on
u1 , and similar terms of this form as ‘‘higher order,’’ th
equation forun , from Eqs.~4! and ~5!, is
d

a

i-
is
e

f-
.

l
-

d

d

dt
un5~an12bnu11¯ !@~a2Dp2/L2!u1

2~8a/3p!u1
21higher order terms#

5~a2n2p2D/L2!un2@4a/np~42n2!#u1
2

3@12~21!n#1higher order terms. ~6!

Equating the coefficients ofu1 , u1
2 on each side of Eq.~6!,

we then find

a2n5b2n50, n51,2,3•••;an50

bn5@8a/np~n224!#@a1~n222!p2D/L2#,

n53,5,7 . . . . ~7!

Equation ~7! verifies that (un /u1)→0 as u1→0. Further-
more, we see that thebn also decrease rapidly with increa
ing n. Because of symmetry, we could have expected
coefficients for evenn to vanish; theu2n do not contribute to
the total populationP5*

0
1dx u(x,t). This means that when

the initial condition is asymmetric, the solution obtained w
only be good for times long enough so that the depende
on the initial condition is weak.

Subject to the above restrictions on the initial condition
we then have

u5u1 sin~px/L !1 (
n51

u1
2b2n11 sin~2n11!px/L

1higher order terms ~8!

where, from Eq.~5!

u15u1~0!~a2Dp2/L2!@~a2Dp2/L2!

1„8au1~0!/3p…„exp~a2Dp2/L2!t21…#21

3exp~a2Dp2/L2!t. ~9!

The value of the critical habitat size,Lc5p(D/a)1/2, is
given exactly by the above result. ForL/Lc,1 and the small
values ofu(0) being considered here, the decay of the po
lation is essentially exponential with a decay time of 1/a@1
2(L/Lc)

2#. For L/Lc.1, we see in Fig. 1 that the time fo
an initial population to reach its steady state decreases a

FIG. 1. Central densityu1 as a function of scaled timeat for
L/Lc51.05@u1(`)50.107# andL/Lc51.25@u1(`)50.415#. Two
initial conditions are shown for each case.
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4034 PRE 62S. HARRIS
initial central density increases. Also, for fixed initial centr
density, the time to reach the steady state decreases a
habitat size increases. Like Landhal’s result for the cen
density @8#, our result foru1 leads to a steady state valu
greater than 1 whenL/Lc@1. However, the results foun
here are not intended to be used for values of the habitat
or initial central density so large that this can occur. Furth
more, by including additional terms in Eq.~8!, the values of
these variables being considered can be extended. As a
ample, foru150.5 in the steady state, Skellam’s exact res
for Lc is 4.197 @5#, Landhal’s approximate result isLc
54.031 @8#, and our result using Eq.~9! and the first two
nonvanishing terms in Eq.~8! is Lc54.164. In comparing the
last two results, we see that, as expected, the nonlinear
persal equation will create new Fourier modes that are
included in thead hocsolution.

In assessing how well the method of solution sugges
here can be expected to work in a specific situation,
nature of the initial conditions is of particular concern. If th
latter are both symmetric and roughly sinusoidal, then
expect that for the interesting case where the habitat siz
close to the critical size, the results obtained will provide
good approximation for all times. The further the initial co
ditions deviate from the above prescription, the less trustw
thy our results will be for early times. In any event, w
expect that for habitat sizes not too much greater than
critical size, the steady state will be accurately describ
This motivates the consideration of more complica
growth scenarios.

IV. MORE GENERAL DISPERSAL EQUATIONS:
ASOCIAL POPULATIONS

We restrict ourselves here to scenarios for which Eq.~1!
provides the generic template for the growth kinetics. W
note first that in the case@3#, whenD is independent ofu and
F(u)5au(12uN) that the critical length is given as befor
and that in the steady stateu1(N)}u1(N51), but in the
more interesting case@3# when D5D0u and F(u)5au(1
2u), the method used here fails as theuj are of the same
order asu1 .

The case of an asocial population has been previo
considered by Bradford and Philip@6#, who considered gen
eral stability criteria. These authors illustrated their form
results for the special case of a sawtooth growth functi
Here we consider a more general and mathematically c
tinuous function that describes asocial growth. This requ
that F(u) be negative at both small and large values ofu,
and positive in between. The simplest possible representa
of this is F(u)5au(u* 2u)(12u), u* ,1.

The equation foru1 , found as before, is

d

dt
u152@~Dp2/L2!1au* #u11~8a/3p!~11u* !u1

2

2~3a/4!u1
3. ~10!

In steady state, the left side of Eq.~10! vanishes, and rea
solutions will only exist if

@32~11u* !/9p#2.~16/3a!@~Dp2/L2!1au* #. ~11!
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This requires both

u* ,0.66, L2.~16Dp2/3a!~1.2822.77u* 11.28u* 2!.
~12!

If both of these conditions are not met, thenu1→0 and the
population does not survive. If these conditions are met,
survival of the population will depend on the initial cond
tion. Here we will assume that the population has grown
some unknown process until, at some threshold valueu1 for
the central density, the onset of asocial growth occurs,
u1(0)5ut . In determining the steady state solution, we ca
not restrict our attentions solely to Eq.~10! with the left side
set to zero. It is not possible to determine on this basis alo
as we could for the Fisher equation, which of the possi
solutions allowable by the above criteria set by Eq.~12! is
ultimately realized. This can be most easily determined
rectly from the full equation, which we rewrite as

d

dt
u152ku1~u12r 1!~u12r 2!, ~13!

with k.0 and where the rootsr 2.r 1.0 follow directly
from Eq. ~10!. If ut,r 1 , then (d/dt)u1,0 initially, and
remains negative so thatu1 decays to zero and the populatio
does not survive. The rootr 1 is the critical minimum initial
population for survival. Whenr 1,ut,r 2 , (d/dt)u1.0 ini-
tially, and u1 increases until it reaches the steady stateu1
5r 2 . The last possibility,r 2,ut , is less likely, but could
conceivably occur as the result of a sudden change alte
the pre-existing growth process, e.g., a changeover to f
sources requiring cooperative effort. In this case,u1 will de-
crease until reaching steady state atr 2 .

V. SUMMARY

The emphasis here has been on illustrating the predic
ability of the method of solution described in Sec. II, partic
larly with regard to the parametric dependence of the criti
factors that limit population growth. Despite a growing tre
toward the simulation of nonlinear behavior, analytical stu
ies can still provide a complimentary window that revea
behavior, often unexpected, as well as the underlying cau
In the case of asocial growth considered here, Eq.~10! gives
a good estimate of the transient time to extinction or a fin
steady state,t}1/@(Dp2/aL2)1u* #, that would be difficult
to determine from computer studies, as well as an estimat
the initial population density survival windows and critic
habitat size.
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